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ABSTRACT

The state estimation problem for a certain class of nonl inear

stochastic systems with white Gaussian plant and observation noise is

considered. The optimal (minimum variance) estimators for these systems

are recursive and finite dimensional . A particular nonl inear system

which contains a polynomial nonlinearity is presented. Both optimal and

C.~) suboptimal estimators and an estimation lower bound for such a system

are derived. The performance of the optimal and suboptimal estima tors
1J. and the lower bound are compared both analytically and by computer

s imulation.
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Optimal estimators have been derived for very general classes o

nonlinear systems [1],[2]. However, the optimal estimator requires,

in general, an infinite dimensional computation to generate the

conditional mean of the system state given the past observations. This

computation involves either the solution of a stochastic partial

differential equation for the conditional density or an infinite

dimensional system of coupled ordinary stochastic differential equations

for the conditional moments. For linear stochastic systems with linear

observations and white Gaussian plant and observation noises, it is known

that the optimal conditional mean estimator consists of a finite

dimensional linear system (the Kalman-Bucy filter [3)). Many types of

finite dimensional suboptimal estimators for nonlinear systems have been

proposed [4], and many numerical experiments have been performed to

compare the various suboptimal estimators. In addition , upper and lower

bounds on the performance (error covariance) of optimal and suboptimal

estimators have been derived for certain classes of nonlinear systems

[5]-[1O]. However , throughout most of the previous research, the

question of how good the performance of a suboptimal estimator (or a

lower bound) is, as compared to the performance of the optimal estimator

(not as compared to that of other suboptimal estimators), has remained

unexamined.

Recently, Marcus, Wh isky, and Lo [11]-[15] have derived finite

dimensional optimal nonl inear estimators for certain classes of nonlinear

systems with white Gaussian plant and observation noise. The existence
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of such optimal estimators al lows us to investigate how both optimal and

suboptimal estimators process Information, and to examine the differences

between them. The classes of systems for which finite dimensional

estimators are Implementable are described by certain polynomial

nonlinearitles or by certain classes of Volterra series expansions. One

class of models considered in [11]-[12] is described by the Ito

equations

dx(t) = F(t)x(t)dt + G(t)dw(t) (1)

N
(A0 + ~ x~(t)A~)y(t) (2)

1=1 ’

dztt) = H(t)x(t)dt + dv(t) (3)

where x(t) Is an n-vector, y(t) is a k-vector or kxk matrix, {A11 are

kxk matrices, w and v are independent Brownian motion (Wiener) processes,

and x(O) is Gaussian. The optimal estimate, with respect to a wide

variety of criteria, of x(t) given the observations z~ ~ (z(s), O<s<t},

is the conditional mean ~(tJt) (also denoted by E
t[x(t)) or E[x(t)Jzt])

[4]. It is well known [3),(4] that the computation of ~(t(t) can be

performed by the finite dimensional (linear) Kalman-Bucy filter. However,

the computation of (tat) requires In general an infinite dimensional

system of stochastic differential equations. In [12), Marcus and Wh isky

have proved that 9(t~t) is computable with a recursive finite dimensional
estimator, if the Ideal generated by A0 In the Lie algebra ~~~~~~~~~~~
is nilpotent. Using Volterra series expansions [16)-Eli], Marcus and
Wh isky have also proved a similar result for systems described by (1),(3),

and In which y(t) Is given by a certain type of Volterra series expansion

3
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or by polynomial type feed-forward nonl inearitles [ll]-[123, as

Illustra ted by the following system:

1dx~(t)1 f-u ol R(t~1 [dwi(t~1I I I I 1 dt + q¼ ~ Fx(t)dt+q
¼dw(t) (4)

Lth2~
t
~ L° ~J [~2(t)J [~ 2(t)J

dy(t) = (-y y(t)+x1(t)x2(t))dt (5)

[dz1(tJ [ 1 t)1 [dv1(t~
I 1 = 1  (d t+r ½ 1 I (6)
Lc~

z2(t)J ~2(t)J Lth92(t )J
where a, B, ?>O, w1, w2, v1, and v2 are independent, zero mean, unit

variance Wiener processes, and x1(0), x2(0), and y(0) are independent

Gaussian random variables which are also independent of the noise

processes. Here (5) involves a polynomial feed-forward nonl inearity.

In section II we construct, for the system (4)-(6), the optimal

estimator and three suboptimal estimators: the extended Kalman filter

(EKF), the constant gain extended Kalman filter (CGEKF), and the best

li near estimator (BLE, also known as the linear minimum—variance

estimator). Section III is concerned with the derivations of error

covarlance propagation equations for both optimal and suboptimal

estimators and a lower bound based on that of Bobrovsky and Zakai [10]

for the system (4)-(6). The existence of the optimal estimator allows

a direct comparison of the lower bound, the error covariance of the

optimal estimator, and the error covariance of suboptimal estimators for

various parameter values and signal-to-noise ratios. Results of

Monte-Carlo simulations are presented In Section IV.
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II. Optimal and Suboptimal Estimators

The optimal finite dimensional estimator for the system (4)-(6) is

constructed as follows [11]— [12]. First, the state x of the linear

system (4) is augmented with the state T) satisfying

1~i(t)1 1a-y -Pi~
(t) lrni(t)1 1x2(t)

k~] = L 0 B _ y _ P
~

(t)] Ln2(t)] 
+

= 1i2(0) = 0 (7)

where P11(t), 1=1 ,2, are the elements of the (nonrandom) Kalman-Bucy

filter error covariance matrix P(t) for the linear system (4),(6) (P(t)

is obviously diagonal). The Kalman-Bucy filter for the linear system

(4),(7), with observations (6), computes the conditional expectations

~(tIt) and ~j(tIt). Finally, ~(tft) is computed according to

d.9(tjt) [_Y;(tlt) +~1(t It)~2(t,t)] dt + ~j’(t~t)P(t)dv(t)

A (8)
y(0I0) E[y(0)]

where the Innovations process v is given by

dv(t) dz(t)-~ (tIt)dt , (9)

dz(t) [dz1(t),dz2(t)]’, and the prime denotes matrix transpose. Hence,

the structure of the nonlinearity in (5) allows the computation of (tlt)

with a five-state ~~~~ estimator.
The existence of a nonlinear time-invariant steady-state estimator

for this problem is also demonstrated In [12). The assumption which

Z -z-~
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assures this result is the controllability and observability of the

original linear system (4),(6), and some additional derivations show

the existence of a steady-state estimator for ~ and y.

The EKF (4] for the state of the nonlinear component of the system

(4)-(6) is given by

d~(tlt) = [-~~(tIt) +~j(tIt)~2(tIt)]dt + 3~[K1(t),K2(t)]dv(t)
~(0I0) = E[y(O)3 (10)

where the si gain hu terms satisfy

= [_~
_
~~

_ 
3P11(t)]K1(t)+P11(t)~2(tJt) (11)

= [-8-i- 3~P22(t)]K2(t)+P 22(t)~1(tIt) (12)

K1(0)=K2(0)= O, ~1(t~t) and ~2(tlt) are generated by the Kalman-Bucy

~~~~~~~~~~~ filter, and dv(t) is given in (9). Notice that the EKF (10) and the

optimal estimator (8) differ only in their gain terms. The question of

whether constant gains in (10) will suffice is also studied (see

Section IV), by utilizing the constant gain extended Kalman filter (CGEKF)

of Safonov and Athans [18]; however, their results are not strictly

applicable to the system (4)-(6), because polynomial nonlinearities

do not satisfy the finite incremental gain conditions of [18).

Now consider the best linear estimator (BLE). Such an estimator can

be constructed by first finding a new state equation which Is linear, with

additive white Gaussian noise, and has the same first two moments (mean

and covariance) as those of the original system (4)-(5); then the Kaiman-

Bucy filter for the new linear state and the observation (6) computes

the BLE ([19), p. 152). Let ~ (~1,i2,~ )’ be the new state. We first
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• compute the mean and covariance propagation equations for the original

state [x ’,y] . Let m (t) = E[x (t)], m Ct) = E[x (t)j, and• x1 1 x2 2
m~(t) =E[y(t)]. Then,

~ 
(t) = 

~
am

~ 
(t) ; m (0) = E[x1(O)] (13)

1 1

i~ (t) = —~sn (t) ; m (0) = E[x (0)] (14)x2 x2 2

i~ (t) = -yin ( t )+m (t)m (t); m (0) = E[y(O)] (15)y y x1 x2 y

Let r(t) be the covarlance matrix of [x’,y]’. (I’ is syisnetric and

r — 0). Applying Ito’s differentiation rule (4] to the elements ofx12
r(t) and taking expectations in the resulting differentials, we have

~ 
(t) = q-2 ar  ( t )  ; r (0) = var(x1(0)) (16)X

1 
x1x1 X1X1

~ Ct) = q - 2~r (t) ; r (0) var(x2(0)) (17)x2x2 x2x2 x2x2

f (t) = (—ci+y)r (t)+m (t)r (t); r (0) = 0 (18)X1y x1y x2 x1x1 x1y

t
~9

(t) 
~~~~~~~~~~~~~~~~~~~~ 

r
~~,

(O) = 0 (19)

= _2ir~ (t) +2E[y(t)x1(t)x2(t)] - 2m
~~

( t )m
~~

( t )m
~
(t)

(20)
r~ (O) = var(y(O))

The expectation of x1(t)x2(t)y(t) in (20) Is computed as follows.

= E~[e
1t y(0) + f~ e_1(t~~ xj(t)x2(r)dr]xl(t)x2(t)1

e~~
t m

~
(O)m

~ 
(t)m

~ 
(t) + f ~ e~~ tt) E[x1(t)x1(r)]

. E[X2(t)x2(TEJdT

~ e~~ m (O)m (t)m (t) +Q(t) (21)

_

_-  : 
:‘: 
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where Q(t) can be expressed in differential form

~(t) = -(u+8+y)Q(t) + [m~~(t) +r
~~~(t)] [m~~

(t) + r
~~~(t)]

Q(O) = 0 (22)

Substituting (21) into (20), we have, if y$a+8,

m2 (t)m2 (t)
~yy(t) = _2Yryy(t)+2~Q(t)

_ 1 ~2 [1_e
~~~~~

)
t]I

~ -2iryy(t)+2~(t) (23)

and Q(t) = Q(t) -m 2 (O)m2 (o)t e
_ +a+8)t if y=a+8. The linear statex1 x2

equation for ~ is thus formulated to be

d~(t) = F
~
(t)dt÷

~
(t)d

~
(t)+ [O.0.mx (t)mx (t)] (24)

where

-a 0 0 q’~ 0 0

F =  0 - B  0 , G ( t ) = 0 q½ 0

0 0 -y o 0 [2~(t)

and ~(t) is a Brownian motion of dimension 3 with ~(t)dt=E{d~(t)d~’(t)}.

Moreover, ~(t)~(t)ë’(t) should satisfy
- 

q 0 m (t)r (t)x2 x1x1

G(t)Q(t)G’(t) - 0 q m
~ 

(t)r
~ x (t) (25)

1 2 2

• 

. 

m (t)r (t) m (t)r (t) 2~(t)
- 

X
2 

X
1
X
1 

x1 x2x2 
-

Then the mean and covarlance propagation equations for ~(t) have the

8 
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same forms as those given in equations (13)-(19),(23). Observe that

• in (24), ~1(t) = x1(t) and ~2(t) = x2(t); only the nonlinear component

of (5) has been altered. The BLE is the Kalman-Bucy filter for the

system (24) wi th observation (6).
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III. Performance of Estimators and Estimation Lower Bound

In this section we shal l derive the error covariance propagation

equations associated with the optimal and suboptimal estimators. We are

Interested in computing the error covarlance of y, since the error

covariance of x is readily implemented via the Kalman-Bucy filter.

Though many lower bounds have been proposed to facilitate the evaluation

of suboptimal estimators, for example, Snyder and Rhodes [5] [6] for

Gaussian state processes, Gilman and Rhodes (7],[8] for systems with

cone—bounded nonlinearities, and Zakai and his colleagues (9],[10] for

fairly general problems in both discrete and continuous time, only

the lower bound derived by Bobrovsky and Zakai [10] is applicable to

the system (4)-(6) . tWe shall investigate the tightness of Bobrovsky

and Zakai’s lower bound on estimator performance -- that is, how close
is the lower bound to the covariance of the optimal estimator?

The error covariance of y is the expected value of the conditional

error covariance E[(y(t) _9(t,t))2 Iz t]. Taking the expectations in the

equation ((4], equation (6.100)) satisfied by the conditional error

covariance, we obtain the error covariance propagation equation

associated with 9(tlt) :
±(t) = -2yE(t )+2E [Et (y(t)x 1(t)x 2( t ) ] _ E t [y(t)]Et [x 1(t)x 2(t)1]

- 3~ 
E[E~(t) +E~(t)]

E(0) var(y(0)) (26) - 
-

where E1(t) — E[(x 1(t) —~ 1( t It ) ) (y ( t )— (t It ) ) lz t], 1— 1 , 2. In the

sequel, we assume that x1(0) and x2(O) are independent, zero-mean,

~~~~~~~~~~~~~ ~~~-- ~~~~ ~~~~.



Gaussian random variables. It Is easy to show that E1(t) = s2(t) 0,
• for x1( t)  and x2(t) are independent, zero-mean, Gaussian processes.

The other expectation In (26) is computed as follows:

Et[y(t)x1(t)x2(t)] 
_ E t[y(t)] Et{x1(t)x2(t)]

= f ~ y(t s) 
~Et [x1 sx 2 sx 1 t x 2 t]

_ E t[x1(s)x2(s)] Et{x1(t)x2(t)] Ids

= f~ ~~~~ [P11(s~t~t)~2(s It)~2(t It) +P22(s,t,t)~1(sI t)~1(tIt)

+P11(s.t~t)P22(s,t.t)] ds

= P11(t)~1(tIt)~2(tIt) +P22(t)ii2(tlt)~1(tIt)

+ f ~ e
1(
~~~ P11(s,t,t)P22(st,t)ds (27)

where P1~(s~t.t) = E[(x i(s) —
~ j(sI t))(xj(

t)_
~~

(t(t))IztI. i ,j=1,2, are

the nonrandom conditional cross-covarlances defined In (12, Lenmia 2.1];

here, P12(s ,t,t) = P21(s,t,t) =0 . A crucial component in computing (27)

is the use of [12, Lenina B.1), which expresses the higher order moment

Et[x1(s)x2(s)x1(t)x2(t)] of a Gaussian distribution in terms of lower

order moments. We need only compute the - expected values of ~1(t ( t)~2(tft)
and ~2(tlt)~1(tft), since the last integral in (27) is nonrandom.

The state equation of ~(tIt) ~ 
(~‘(t It) ,~’(t It)]’ is the Kalman-Bucy

Afilter for the augmented system (4) (7) with observation (6). ~
- - 

satisfies

d~(tIt) - C(t) ~(tJt ) + ~ D(t)dv(t) (28)

11
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where

• -a 0 0 0 
- 

s11(t) 0

0 -8 0 • 

0 0 S (t)C(t)~~ 1 , D(t)~~ 
22

O 1 a-y-qPj 1(t) 0 0 S2~( t)

- 

1 0 0 8-y-qP~~(t) S14(t) 0

and S(t) is the conditional error covariance matrix of ~(t) given z
t; it

satisfies the Riccati equation, and S11(t) = P11(t) and S22(t) = P22(t).

Since the innovations process v is a standard Brownian motion process

with unit variance [2], the covariance e(t) of ~ is easily computed

according to

~(t) = c(t).(t)+.(t)C’(t)+3~ D(t)D’(t). (29)

and E[~2(tIt)~1(tIt)] are, respectively, the (2,3) and

(1,4) elements of •(t). Expressing the last Integral In (27) in
differential form, we have

f~ e ”(~~~ P11(s ,t ,t)P22(s ,t,t)ds =

where 6(t) satisfies

= 1+[a+8_Y_qP~~(t)
_
qP;~(t)]6(t); 6(0) = 0 (30)

Finally, equation (26) is rewritten as

~(t) = -2yE(t) +2{P11(t)423(t) +P22(t)~14(t) +P11(t)P22(t)6(t)}

~ -2yZ(t)+20(t) (31)

where e(t)>o for all t>0, is a function depending on the system
parameters (a,B,y) and noise covariances (q and r) As shown in (12],

12
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the augmented linear system (4),(7) Is time-invariant in steady state

and S(t) has a unique positive-definite steady-state solution S.

Similarly, equations (29) (30) have steady—state solutions • and 6,

respectively, where • is positive definite and 6 is positive. Hence,

at steady state, the solution of (31) is Z = e/y.

The lower bound [10] for the system (4)-(6) is obtained by applying

the Kalman-Bucy filter to the following linearized system

dh(t) = A(t)h(t)dt+G(t)dw(t) (33)

dk(t) = B(t)h(t)dt+r½ dv(t) (34)

where h(t) and k(t) are 3- and 2-dimensional vectors, respectively, and

w(t) and v(t) are independent standard Brownian motions of dimensions 3

and 2, respectively. A(t), 8(t), G(t) are 3x3, 2x3, 3x3 matrices,

respectively:

-a 0 0 q 0 0

A(t) = 0 —8 0 , G(t) = 0 q 0

0 0 -y 0 0 0

and B(t) is the solution of

~.-+~ .E[4(t)] 0 0

3B ’(t)B(t) — 0 ~- +~
.E[x~(t)] 0

- 
0 0 O~~

h(O) is assumed to be a zero-mean, Gaussian random vector with nonsingular

variance, and k(O)— O.

The lower bound E~~(t) of Bobrovsky and Zakal, which lower bounds
;~~~~

13
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the error covariance of any estimator of y, is the (3,3) element of the

• error covariance matrix for the system (33)-(34) . ~18(t) satisfies

kB(t) = -2yE18(t) (35)

Comparing (31) and (35), we have ELB(t) < ~(t) for all t, as expected.

The bound does not depend on the measurement noise covariance r; for some

values of r it is far from the optimal error covariance (see Section IV),

since 0(t) in (31) is nonzero and can in fact be large. This demonstrates

that the lower bound of Bobrovsky and Zakai can be quite loose in some

cases. This was to be expected, since the bound is based upon the

Cramer—Rao lower bound, which can be loose if the signal-to-noise ratio

is small (20]. However, in steady-state E(t) ELB(t) as r~~0, wh ich can

be shown as follows. Based on the discussions following (31), the steady

state solution of E(t) is

— — 

i 11 23 22 14 11 22

where

P11 
_ar+1a2r2+qr ‘ 

P22 -~r+ ’~
’
~
2r2+qr ,

— 
Pu

p22 s - 

P11p22S14 (P11P221r) + (a—~+y) P 22 +q ‘ 23 
- 

(P11P22/r)+(.a+84y)P11+q

— 
(P11P~2/r)f 2B(P11P22/r)523 — 

(P~1P22/r)+2a(P11P22/r)S1423 2~[(-a+~+y)P11+q] ‘ 14 2a((a-B+y)P22+q] 
‘

~~~~~~~ 

61
(
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We can easily see that as r~ O, Z -~~ ELB(’O), thus, at least at steady

• state, this result confirms the prediction by Bobrovsky and Zakai [10].
The EKF generates an “approximation” E(t) to the conditional error

covariance E[(y(t) _~ (tIt))2tZt], which is given by

~(t) = -2y~(t)+2K1(t)~2(tIt) +2K2(t)~1(tIt) 
- [K1(t)]

2- [I(2(t)]
2 (36)

Taking expectations in (36), we find that the EKF approximation E[~(t)]

to the error covariance E[(y(t) —~ (tIt)2) satisfies

~~~E[~(t) ] = -2yE[~(t)) (37)

Thus ELB(t) = E[E(t)] < E(t), Indicating that E[~(t)J may not be a very

good approximation to the error covar-lance E[(y(t) -~(tIt))
2) of the EKF;

for, since 9(tjt) of (8) is the optimal mean-square error estimate, it is

clear that in fact E(t) < E[(y(t) -~ (tIt))
2J. Hence, as is well known,

one should exercise caution in using E[~(t)J as an indicator of EKF

performance.
Denoting ~(t) ~ E[(y(t) -~ (t~t))

2], the error covariance matrix
associated with (t~t) of the BLE, we have

~~ (t)+~ (t)• E(t) -2yZ(t)+2Q(t)- 1 
r 
2 

~ ~(O) var(y(0)) (38)

where

P (t)~~(t)z1(t) — — (a+y)Ei(t)+m~ 
(t)r x (t) — 

11 1 • z CD) 0 (39)
2 X11 r

- P.~(t)~~(t) -E2(t) • -(B+y)~2(t)+m (t)r (t) - ; £~(0) 0 (40)X 1 x2x2

and ~1(t) — E[(x1(t)—~ 1(t(t))(y(t)—~ (tft))1, 1— 1 ,2.
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Consider now the stability of (38)-(40). First, as ti~~, m Ct) andxl
m (t) approach zero. Al so, ~Ince (4),(6) is controllable and observable,

P11(t) and P22(t) approach positive constant values. Thus [24, p. 113],

and ~2(t) approach zero as t+co. Comparing (38) and (23), we

find that E(t) has the same performance as that of r~~(t) (the a priori
covariance) as t+oo. Furthermore, if x1(O) and x2(0) are zero-mean,

m Ct), in (t), ~,(t), and ~2(t) will be zero for all t>0. Thus, the
£ —

observation process z(t) is uncorrelated with y(t) in this case, and

(tlt) is just the a priori mean m~(t); that is, the BLE for y(t) does not

take advantage of the observations during the course of estimation. The

error covariance ~(t) of the BLE is also the a priori covariance ryy(t)

which, at steady state, is

- 2
r E q 

(41)YY 4a8y(a+8+y)

Al though in this case y(t) is uncorrelated with z(t), it is not independent

of z(t); hence the optimal estimator which computes the conditional mean

(tlt) can In fact perform quite well , as Is demonstrated in Section IV.

It should also be pointed out that for the system (4)-(6) the optimal

estimator Is also the best quadratic estimator; that is, it is the best

estimator whose input/output map can be expressed as a Volterra series of

order 2 wIth Input as the innovations process v(t) (see [21)).

I~ (10) Bobrovsky and Zakai showed that for a scalar problem and for

sufficiently m ill values of r ,  optimal linear filtering yielded practically

the same filtering error as that of the optimal nonlinear filtering. This

Is not the case for our multivariable problem. In fact, for sufficiently

large q and email r, ~ Is much greater than E and Z~8 (see Section IV).
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IV. Simulation Results

- 
- In order to compare and evaluate the performance of the optimal

estimator, the EKF, the CGEKF, the BLE, and the lower bound, digital

Monte Carlo simulations were employed. In this section it is assumed that

x1(O) and x(0) have zero mean. Since the error covariance propagation

- 
- equations for the optimal estimator (31), the BLE (38), and the lower

bound (35) are ordinary differential equations, they were computed off-line

and stored. Simulations were conducted on the EKF (10), the CGEKF, and

the optimal estimator (8). Identical noise sequences were used to allow

direct comparison. Our approach to the statistical analysis of the

Monte Carlo simulations parallel s that of Bucy and his associates (223.

The mean-square error

ii = E((y(t) ..y*(t))2) (42)

where y1~(t) denotes the estimate (e.g., 9(tlt) or (ttt)), was used as

the performance measure in the simulation. Suppose that {y~) and

n-1,...,N, are sequences of independent realizations of y~(t) and y(t),

respectively. Then the statistic

* 

~ 
} (y~-y~)

2 (43)
n-I

is an approximation to Li for sufficiently large N.

In the experiments, the parameters were varied as follows:

x,8,y 0.9

q — 2

raO .04, O.2 and l
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75 sample paths, each of which contained 5000 steps of length 0.OOls, were

- • run in each simulation. The constant gains in the CGEKF were chosen to be

the average gain values (the gains in (10)) over 75 sample paths; both

gain values were quite small (we also simulated the zero-gain EKF; the

simulation result was almost the same as that for nonzero gains). Figs. 1-3

display, for three cases, graphs of mean-square error (averaged over 75

sample paths) of the optimal estimator, the suboptimal estimators (EKF,

CGEKF, BLE), and the lower bound.

As expected, the steady state optimal error covariance approaches the

lower bound for very small values of r (-0.04) and is greater than the

lower bound for large r (=1). The BLE remains unchanged in the three

figures, since it is just the a priori mean. The EKF performance is quite

close to the simulated optimal error covariance in every simulation run;

further simulations (23) have indicated that the gain terms (see (8) and

(10)) of the optimal estimator and the EKF are almost equal. The performance

of the CGEKF’ is somewhat less effective than that of the EKF, but is far

superior to the BLE performance. The estimate ~(tIt) of the CGEKF is the

result of passing the a posterlori means ~1(tIt) and ~2(tIt) through the

nonlinear filter (10) with gains set to near-zero values, while the (tft)

of the BLE results frca passing the a priori means in (t) and in Ct) throughxl x2
(15). This of course explains why the CGEKF, which utilizes the observations,

has better performance than the BLE. It should be noted that the difference

between the averaged mean-square error of the optimal estimator and the

actual optimal error covariance is due to the fact that averaging over 75

sample paths does not give a good approximation to the expectation.
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V. Concl uding Remarks

A nonlinear system with a finite dimensional optimal nonlinear

estimator has been considered. Based on such a system, optimal and

suboptimal estimators and an estimation lower bound have been studied.

The optimal estimator is used as a criterion in evaluating the performance

of the suboptimal estimators and the lower bound. Simulation results

indicate that the performance of the EKF is as good as that of the

optimal estimator, and the Bobrovsky and Zakai lower bound is tight for

very high signal-to-noise ratio (r+0) but is less effective for large

values of state and observation noises. As far as suboptimal filter design

is concerned, the CGEKF is probably preferable, in most of the cases

studied, to the optimal estimator and the EKF, due to i ts simple

computational requirements. In fact, a naive estimator which passes

~1(tIt) and ~2(tIt) through a model of the nonl inear system (5) performs

almost as well.
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